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We report on the use of Rys numerical quadrature for the calculation of two-
electron exchange integrals containing two Gaussians and two plane-wave func-
tions, and two-electron integrals containing three Gaussians and one plane-wave
function. Generally, the Rys polynomials for this mixed basis set are complex.
We present formulas for obtaining their roots and weights that are also generally
complex. Rys numerical quadrature provides an alternative method for calculation
of integrals of this type that are encountered in the electron—-molecule scattering
theory. © 1998 Academic Press

Key Wordsiwo-electron integrals; Rys numerical quadrature; mixed plane-wave-
Gaussian basis sets.

I. INTRODUCTION

Hybrid two-electron integrals in a mixed Gaussian and plane-wave basis set are neec
calculations of electron scattering by polyatomic molecules [1]. A product of a Gaussian
a plane-wave function may be expressed as a product of two Gaussians, one real fur
and the other one centered on a point in the complex plane, multiplied by an pre-expone
factor

e—(x(r—A)z ei kr _ ei k-A e—k2/2a e(—a/2)(r—A)Ze(—a/Z)(r—A—i (k/a))z’ (1)

and also as single Gaussian

efa(r 7A)2ei k-r _ ei k-A efk2/4ot efvt(r —A—i(k/2x))? ) (2)

Hybrid integrals therefore may be calculated as is usual in the electronic structure theor
calculation of two-electron integrals over Gaussians, except that complex arguments
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be used in incomplete gamma functions [2, 3]. However, calculation of hybrid integral:
this way has not been used much in practice. Instead, Watson and McKoy [4] develor
method based on a partial wave expansion of plane-wave functions. We thought, how
it might be profitable to examine for this purpose the use of the Rys numerical quadrs
[5], developed for effective calculation of two-electron integrals in the electronic struct
theory [6, 7]. We consider two types of integrals, exchange free—free integrals and inte
with three Gaussians and one plane-wave function.

Il. RELATION TO INTEGRALS OVER GAUSSIANS

The purpose of this section is to obtain the integrals in a form amenable to treatmer
the Rys numerical quadrature and to express all quantities needed in this method [7].
Eq. (1) we rewrite the exchange free—free integral in the form

/ / e (xg — A)™ (1 — AY™ (21 — AYT e A (i)ék-fz

r12

x (X2 — B)™ (Y2 — B)" (2o — B)™ e #"2®  dr, dr,

R R
1 « . .
S <6) (X2 — B)" (y2 — By)ny(zz - B)" eiﬂ(rziBilk/zﬂ)z drodrs. (€)

Hereafter we will follow closely the notation of the paper by Rys and collaborators |
Hence, in accordance with their paper we define

Xi = Ay (4)
K
Xj=A—i— (5)
(07
Xk = By (6)
X =B +i§ @)
| = Dx ,3
o
g =§ 8
o
a =3 )
_ B
ak_i (10)
_ B
aq =5 (11)
K,
xA=AX—|5 (12)
- ky
Xg = Bx+|£ (13)
A=« (14)

B=2§ (15)
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_ o
P= o+ B (16)
Dy = p(Xa — Xg)? (17)
12 2
Gy = Kk (18)
4o 4B

The number of points in the numerical quadrature is given by the condition

m* +mY +m? 4+ n* 4+ nY + n?

N > 5 (19)
The respectiviNth Rys polynomial
Rn(te, X) =0 (20)
is of degree A in the variable and the parametex is obtained as
X = Dx+ Dy + D, (21)

The rootst, and weight factoiV, of Ry(t, X) depend on the value of. Once the roots
and weights are determined, the integral from Eq. (2) is obtained by numerical quadra

X v4 il 1 X
/ (X1 — A)™ (y1 — AY™ (zg — Ay g AKIK 2 (E) (X2 — B)" (y2 — By)"™

1/2
X (Zp — Bz)nze—ﬁ(rz—B—ik/Zﬁ)z dridro = 2(%) Z I (t) Iy () 12(t) W, (22)

a=1,N

following the usual procedure. The only difference is that we have to pass to comj
arithmetics. The integralk, |y, |, are obtained as described [7] in the original procedul
for real Gaussians, except that, xg, X, and Rys polynomial&y are now complex, and
that only integrals of the typé(n;, O, nk, O) are calculated. The problem thus reduces t
an efficient computation of compley and W, for any given value of compleX. This
will be discussed in the following sections. The integriglsly, andl, contain the factor
exp(—G). This factor in its original expression [7] is independent of the positions of t
electrons and so can be taken outside the integral and collected together with other fe
standing before the integral in Eq. (2).

The integrals with three Gaussians may be expressed as

/ / (Xt — A)™ (y1 — AY™ (21 — Ap™e A (x, — B (v — B)” (21 — By
x € PTB (1115 (6 — Co'(y2 — €)' (22 — €)' 'e 7 2 dr dr,
= eik~Ce7k2/2y //(Xl _ Ax)mx (yl _ Ay)my(zl _ AZ)mZe*OZ(fl*A)Z

x (X — BO™ (y1 — B)™ (z1 — B)™ e P B (1/r15) (%0 — G (yo — Cy)"

x (Zp — CZ)|ze*()//2)(TZ*C)Ze*(J//Z)(l’Z*C*ik/l/)2 drydr. (23)
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As with exchange free—free integrals we define

Xi = Ay (24)
Xj = BX (25)
Xk = Cy (26)
X = Cyx+i B (27)
14
a =u (28)
aj=p (29)
_r
& = 5 (30)
_r
a = > (31)
_ a A + BBy
XA = B B (32)
Xg = Cy +i ﬁ (33)
2y
A=a+p (34)
B=y (35)
_ (a+ By
p= a+pB+y (36)
k2
Gx = aB(a+ B) H(Ac— B)?— X 37)
4y

N X1+ 12+ m* 4+ mY +m? 4+ n* 4+ nY 4 n?
> .
2

The value ofX is obtained from Eqgs. (17) and (21) and the numerical quadrature is
same as in Eq. (22) for exchange free—free integrals. The terneeded for the evaluation
of the integral are of the typlg (n;, nj, nk, 0) and they are obtained by recurrence formula
[7]. [As suggested by the referee, the transfer of facters- x;) to centeri, used in these
recurrence formulas, may be done by the PRISM algorithm of the GAUSSIAN code.]

(38)

Ill. COMPLEX RYS POLYNOMIALS

By a complex Rys polynomial we mean a Rys polynomial according to the origil
definition [5],

R(t, X) = ) Cin(X)t%, (39)

k=0

but with complexCy,, coefficients, complex paramet&, and complex variablé. For a
given X the coefficients are obtained from the orthogonality condition [5]

n
Cmmz Ckn Fm+k = (Smn, m S n, (40)
k=0
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whereF elements are incomplete gamma functions for complex argur¥eritee compu-
tation of F,(X) is discussed separately [8]. The values,ofvere obtained by root search
in the complex plane, basically in the same way as is done in one dimension by rout
contained in the HONDO package [9]. The weight factors were calculated by using
formula [5]

n-1
Wt =Y Rt (41)
i=0

In the asymptote Re— —oo it holds [8]

im Fpn(2 = . Iimﬁ Fo(2). (42)

Rez— —o0

For R (t, X) the root is given [5] by
ty = (F1/Fo)*?, (43)
which implies the asymptote

lim t,=1 (44)
Rex— —o0
The same asymptote also holds for higher Rys polynonia(s, X). This tendency may
be seenin Figs. 1 and 2.
Complex Rys polynomials constructed as described in this section have the same |
erties, necessary for numerical quadrature, as the usual real Rys polynomials [5]. The
orthogonal with respect to the complex weight factor@xjt?),

1
/ R (t, X)R;(t, X) exp(—Xt?) dt = §;, (45)
0

0.0 02 04 06 08 1.0

FIG. 1. Rys polynomialsRs(t, x) for three different parameters
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0.0 T T

FIG. 2. Dependence of roots of Rs(t, X) on the value of the parameter

and they are also orthogonal under summation,

DRt XIRj (e, X)We (ty) = 8, (46)

a=1

where 21> i + j, t,(X) is a root of R, with a positive real part, and/, is the appropriate
weight.

IV. DETERMINATION OF ROOTS AND WEIGHTS

Widespread use of the Rys numerical quadrature in the electronic structure theory i
to the circumstance that the rodtsand weight factor$V, may be calculated accurately

FIG. 3. Dependence of weight factovs, of Rs(t, X) on the value of the parameter
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and efficiently [5] for any givem and X. In this section we present the results of ou
experimentation with complex Rys polynomidRg(t, z). Optimum calculation of, and
W, requires the use of different formulas dependingn@mdz = x + iy. We report several
distinct cases.

For the imaginary part af we may estimate the upper limit for a range of its absolu
value which is met in practical calculations. For exchange integrals the valuis given
by Egs. (4)—(17) and (21). Assume for simplicity that orlgomponents of the vectoss,

B, k, andk’ are nonvanishing, and thit=k’ anda = 8. Then the imaginary part afis

Imz = —(Ac — Boky. (47)

The largest interatomic distance in the molecule of benzene, for example, is about 10
and the electron energy of 1000 eV corresponds=a8.6 au.~*. This gives|Im z| = 86.
Under the same assumption we arrive at a similar estimate for integrals with three Gaus
and one plane-wave function. We considered it there sufficient to limit our experimenta
for the region given bylm z| < 400.

Roots and Weights foriRt, 2)

x >33 and any y. In this region we may apply the limiting expression derived [5] fo
real Ry (t, x) and the root and weight is obtained directly as

t= (2272 (48)
and
1 1/2
W = E(n/z) /2, (49)

15< x <33and any y. As with the realR;(t, x), the limiting expression, augmented
by the Q-type correction [5, 9], may be applied,

W = %(n/z)l/2 +e72Q, (50)
and

Q. = (0.196232641494% — 0.49695241464497 — 0.6015658118648% 10*. (51)

For the root we have

t = (Fi/Fo)2, (52)

and
Fo=W, (53)
Fr=(Fo— eiz)/ZZ. (54)

10<x <15 and |y| <8. The root and weight are calculated again by means
Egs. (50)—(52), but th®-type correction contains four terms [9].
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10<x<15and|y|>8and -25<x <10and any y. [ is calculated explicitly [8]
and used in Egs. (52)—(54).

X <—25andanyy. [iscalculated by means ofthe asymptotic expansion [8] protecti
the calculation against overflow. The weight is obtained from Eq. (53)/&s* and the
terme~2 is shifted to the pre-exponential factor (see Egs. (1) and &)is also obtained
asF;/e " from Eq. (54) and root from Eq. (52).

Roots and Weights forJg, z)

X >40and any y. Roots and weights may be obtained directly from limiting expressio
derived [5, 9] for reaRy,

t, =2 Yr g, (55)
Wa = Z_l/zwomv (56)

wherer,,, is a positive root of Hermite polynomiéd,, andW,, is the corresponding weight
factor for the 2-point Gauss—Hermite quadrature formula [5, 9].

33<x<40and any y;15<x <33and|y| <15 10<x <15and|y| <5. Roots and
weights may be obtained directly by means of the limiting expressions contaipiagd
Q., corrections [5, 9],

= Z_l/zrom +e7%Q, (57)
W, = 27 Y%w,n + €72Q,. (58)

15<x<33and|y|>15 10<x<15and|y|>5 —25<x <10 and any y. For a
given z we select an optimum way of calculation f&p, F1, F2, and F; functions [8].
Squares of root andt? are found from the solution of the quadratic equation representi
the R, polynomial

(FoF2 — FAHv? + (F1F2 — FoFa)v + FiFs — FZ =0 (59)
and for the weight factors we have
Wy = (FL — t7Fo) /(7 — t5) (60)
and

Wso = Fo — Wi (61)

X < —25and any y. Again we use Eqgs. (59)—(61) but the functions are obtained
from the asymptotic expansion [8].

Roots and Weights fordR, 2)

x > 0and y=0. The roots and weights are obtained by the standard procedure [5
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—18<x <0and y=0. This region was broken into several smaller ones and with
each we obtained the Chebyshev polynomial approximatidp gordW,, following closely
the original procedure used for positixearguments [5].

—25<x<—18and any y;—18<x <33 and any y# 0; 33<x < 100and|y| > 50.
First we evaluate the coefficients of tRg polynomial,

Rs(t, 2) = Coz + Ciat? + Caat* + Caat®, (62)

from the functiong~, to Fg by the C FC orthogonalization [5].
For anyt close to a root, we obtain the following approximate expression from th
truncated Taylor expansion:

Rs(t) = Ry(t)(t — to). (63)
For the root, we have
ta =t- R3(t)/R/3(to¢) (64)

Equation (64) is solved iteratively for by using a suitable guess farin both R; and R;.
Convergence is good for an educated guess and the precision‘fdg 8chieved in several
steps. We found that the number of points used for a guess may be limited to a set list
Table 1.

The other two roots may be obtained by using the properties of the cubic equation

at+bv+c’+13=0 (65)
(v=1)(v—15)(v—1t5) =0 (66)
TABLE 1

Roots and Weights ofR;(t, 2) for Several Values ofz

X y o te W,
0 0 1 023861918614-0.0i 0.4679139346+0.0i
2 0.6612093865+-0.0i 0.3607615730+0.0i
3 0.9324695142+-0.0i 0.1713244924+0.0i
—-25 0 1 08608284718+0.0i 0.0002077080+0.0i
2 0.9517421873+0.0i 0.005663060H-0.0i
3 0.991438557#-0.0i 0.014556046#-0.0i
0 100 1 002922900341-0.343513005b —0.000214826'4-0.000052316
2 0.0493015410-0.051789778B 0.0628828727-0.062722144D
3 0.9998428610-0.004997334i7 —0.0025555275+0.004302738D
33 50 1 00496122630-0.026699595P 0.0824406699-0.044366704R
2 0.1519787400-0.081789676b 0.0178694536-0.0096167198
3 0.2674269042-0.143919866i7 0.0005153764-0.000277357B
33 200 1 00233543649-0.019816773B 0.0388079835-0.032929498iL
2 0.0715421285-0.060705318i7 0.0084119249-0.007137600i7

3 0.1258879315-0.1068191141 0.00024261606-0.000205854R
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a = Cps/Cas = —t2t5t2 (67)
b = Cy3/Ca3 = 23 + tot3 + tit3 (68)
C= C23/C33 = —tf — t22 — tg’. (69)

Sincet; is already known, the roots andt; are obtained as

_ 12
v=1]

from the quadratic equation
v+ (c+tf)v—a/tf =0 (70)

The weights are obtained from Eq. (41).

X < —25andanyy. Asisseen from Fig. 1, the curve f& becomes flat as decreases
and the determination of roots becomes troublesome. In this regiothef calculation of
Fn functions is fast [8], and it is therefore preferable to reorganize the right-hand sidk
Eq. (22) as

1/2
1Y
2(71) D ) lyt) )Wy = > > CutZ™W, (72)
a=1N m «
and next, using the properties of roots and weights of Rys polynomials [5], as
0 1/2
2(n> D k) ly ) 12(t)We = > CrnFim, (72)
a=1,N m

which corresponds to the traditional calculation method of two-electron integrals in
electronic structure theory [10]. We do not claim, however, that the Rys numerical quadre
cannot be applied in this region. We only do not know to determine the roots and wei
effectively and with sufficient precision for< —25.

x > 100and any y; x> 50and|y| < 50. t, andW, may be calculated directly from the
limiting expressions (55) and (56).

33<x<5b0and|y| <50. Equations (57) and (58) may be used for direct calculatic
of t, andW,.

Roots and Weights for4R, 2)

X >0and y=0. For real nonnegative the roots and weights are calculated by th
standard procedure [5, 9].

X >47and any y. Use may be made of Egs. (55) and (56) withandw,,, determined
for real R4 polynomials [5, 9].

35<x<47and|y| <50, 20<x <35and|y| <5. In this region roots and weights
may be calculated from,, andw,n values and) corrections [5, 9] by means of Egs. (57)
and (58).
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—25<x<20and any y;20<x <35and|y| >5; 35<x <47and|y| >50. We first
evaluateF; to Fyo functions [8]. Then thés(t, z) polynomial is determined from the'€C
orthogonalization [5], and its roots are obtained by means of an iterative procedure, sir
to that used folRs(t, z) polynomials. Again, we use a truncated Taylor expansion

Ra(t) = Ry(t) (t — t) (73)

and starting with two different educated guesses for two different roots, we obtain
values oft, in several steps from

te =t — Ra(t)/Ry(Lo). (74)

This iterative procedure works well if the guessegf@ndt, are close to the two roots. We
keep therefore the values of the guess in two arrays of size 288 internally stored in the
program. The grid is 0.85 and each array spans the regiii= x =47 and 0= y = 100.
Values fory =100 may be used as a guess for determination of rootsywitii 00.

The other two rootdz andt,, are obtained from the quadratic equatiorvastf,

v+ (d+t2+)v+a/titZ =0, (75)

which was derived from the following manipulation wiRy(t, 2):

Ru(t, 2) = Cos + C14t? + Coat* + Caat® + Cyat® (76)
a+bv+cv’+dv®+0vP=0 (77)
(v=t)(v-)(v-td)(v-1t§) =0 (78)

a = Coq/Cag = t2t2t512 (79)
b = Ci4/Caq = —t2t2t2 — 227 — t2t2t2 — t2tat2 (80)
C = Cpa/Caq = 27 + t22 + t23 + 27 + 312 + t3t2 (81)
d=C3/Caa=—t2—t7 —t5 2. (82)

The weights are obtained from Eq. (41).

X <—25and any y. For large negative it is difficult to maintain in the determination
of roots and weights the required numerical precision, and therefore it is preferable to de
explicit formulas for theC,, coefficients appearing in Eq. (71) and to evaluate the particul
integral from thefF,, functions in the traditional way. Still it is certainly desirable to develo
such a procedure which could evaluate roots and weights in this regioefigictively and
with sufficient precision.

V. SUMMARY

We suggested the Rys numerical quadrature as a method for the calculation of
electron integrals in a mixed Gaussian and plane-wave function basis set. In contrast 1
original use of the Rys numerical quadrature for integrals in Gaussian basis sets, the
and weights of Rys polynomiaR,(t, z) given by mixed basis sets are generally comple;



EVALUATION OF MOLECULAR INTEGRALS 277

Their accurate and efficient computation requires different approaches for different reg

of

cal

z. Our experimentation in this respect is presented3qt, z) polynomials withn = 4.
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